If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-10=-9
We move all terms to the left:
n^2-10-(-9)=0
We add all the numbers together, and all the variables
n^2-1=0
a = 1; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·1·(-1)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2}{2*1}=\frac{-2}{2} =-1 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2}{2*1}=\frac{2}{2} =1 $
| g^2+2g-24=0 | | 2y+5=15−2y | | 7x-2x-3=7x-18 | | 7x-2x-3=28 | | (Q+5)x4=40 | | (E+5)x4=40 | | 5p-4p=-6+15 | | -36-(-30n)=-216 | | 24-10n=n^2 | | 6x+14=9x-10 | | 2(x+30)^2=1800 | | 0=-16t^2+40t+271 | | 84=8+16n-4 | | 40x2+53x+9=0 | | 4y^2+48y-10=0 | | 3x^2+1=19 | | 3v^2-3=18 | | a^2+5a=84 | | 25b^2-3=1 | | 1/3=-1/4u-1/5 | | 4n^2+1=26 | | n=5n+6/6n+5 | | 3(2x-4)=-3x+24 | | 25×5=6x10 | | (x-5)×5=6x10 | | 20t+2(t^2)=100 | | 6x²+1=20 | | 5+16x^2=21 | | 5(t^2)+20t=100 | | 2(t^2)+20t=100 | | 20t^2+2t=100 | | -2(x-4)+5=29 |